627 research outputs found

    Evaluation of milk yield losses associated with Salmonella antibodies in bulk-tank milk in bovine dairy herds

    Get PDF
    The effect of Salmonella on milk production is not well established in cattle. The objective of this study was to investigate whether introduction of Salmonella into dairy cattle herds was associated with reduced milk yield and the duration of any effect. Longitudinal data from 2005 through 2009 were used, with data from 12 months before until 18 months after the estimated date of infection. Twenty-eight case herds were selected based on an increase in the level of Salmonella specific antibodies in bulk-tank milk from < 10 corrected optic density percentage (ODC%) to ≥ 70 ODC% between two consecutive 3-monthly measurements in the Danish Salmonella surveillance program. All selected case herds were conventional Danish Holstein herds. Control herds (n = 40) were selected randomly from Danish Holstein herds with Salmonella antibody levels consistently < 10 ODC%. A date of herd infection was randomly allocated to the control herds. Hierarchical mixed effect models with the outcome test day energy corrected milk yield (ECM)/cow were used to investigate the daily milk yield before and after the estimated herd infection date for cows in parity 1, 2 and 3+. Control herds were used to evaluate whether the effects in the case herds could be reproduced in herds without Salmonella infection. Herd size, days in milk, somatic cell count, season, and year were included in the models. The key results were that first parity cow yield was reduced by a mean of 1.4 kg (95% CI: 0.5 to 2.3) ECM/cow per day from seven to 15 months after the estimated herd infection date, compared with first parity cows in the same herds in the 12 months before the estimated herd infection date. Yield for parity 3+ was reduced by a mean of 3.0 kg (95% CI: 1.3 to 4.8) ECM/cow per day from seven to 15 months after herd infection compared with parity 3+ cows in the 12 months before the estimated herd infection. There were minor differences in yield in second parity cows before and after herd infection, and no difference between cows in control herds before and after the simulated infection date. There was a significant drop in milk yield in affected herds and the reduction was detectable several months after the increase in bulk-tank milk Salmonella antibodies. It took more than a year for milk yield to return to pre- infection levels

    Hyperpaths in network based on transit schedules

    Get PDF
    The concept of a hyperpath was introduced for handling passenger strategies in route choice behavior for public transit, especially in a frequency-based transit service environment. This model for handling route choice behavior has been widely used for planning transit services, and hyperpaths are now applied in areas beyond public transit. A hyperpath representing more specific passenger behaviors on a network based on transit schedules is proposed. A link-based time-expanded (LBTE) network for transit schedules is introduced; in the network each link represents a scheduled vehicle trip (or trip segment) with departure time and travel time (or arrival time) between two consecutive stops. The proposed LBTE network reduces the effort to build a network based on transit schedules because the network is expanded with scheduled links. A link-based representation of a hypergraph with existing hyperpath model properties that is directly integrated with the LBTE network is also proposed. Transit passenger behavior was incorporated for transfers in the link-based hyperpath. The efficiency of the proposed hyperpath model was demonstrated. The proposed models were applied on a test network and a real transit network represented by the general specification of Google's transit feed

    Assessing the importance of a self-generated detachment process in river biofilm models

    Get PDF
    1. Epilithic biofilm biomass was measured for 14 months in two sites, located up- and downstream of the city of Toulouse in the Garonne River (south-west France). Periodical sampling provided a biomass data set to compare with simulations from the model of Uehlinger, Bürher and Reichert (1996: Freshwater Biology, 36, 249–263.), in order to evaluate the impact of hydraulic disturbance. 2. Despite differences in application conditions (e.g. river size, discharge, frequency of disturbance), the base equation satisfactorily predicted biomass between low and high water periods of the year, suggesting that the flood disturbance regime may be considered a universal mechanism controlling periphyton biomass. 3. However modelling gave no agreement with biomass dynamics during the 7-month long low water period that the river experienced. The influence of other biomass-regulating factors (temperature, light and soluble reactive phosphorus) on temporal biomass dynamics was weak. 4. Implementing a supplementary mechanism corresponding to a temperature-dependent self-generated loss because of heterotrophic processes allowed us to accurately reproduce the observed pattern: a succession of two peaks. This case study suggests that during typical summer low water periods (flow stability and favourable temperature) river biofilm modelling requires self-generated detachment to be considered

    On the complexity of strongly connected components in directed hypergraphs

    Full text link
    We study the complexity of some algorithmic problems on directed hypergraphs and their strongly connected components (SCCs). The main contribution is an almost linear time algorithm computing the terminal strongly connected components (i.e. SCCs which do not reach any components but themselves). "Almost linear" here means that the complexity of the algorithm is linear in the size of the hypergraph up to a factor alpha(n), where alpha is the inverse of Ackermann function, and n is the number of vertices. Our motivation to study this problem arises from a recent application of directed hypergraphs to computational tropical geometry. We also discuss the problem of computing all SCCs. We establish a superlinear lower bound on the size of the transitive reduction of the reachability relation in directed hypergraphs, showing that it is combinatorially more complex than in directed graphs. Besides, we prove a linear time reduction from the well-studied problem of finding all minimal sets among a given family to the problem of computing the SCCs. Only subquadratic time algorithms are known for the former problem. These results strongly suggest that the problem of computing the SCCs is harder in directed hypergraphs than in directed graphs.Comment: v1: 32 pages, 7 figures; v2: revised version, 34 pages, 7 figure

    Biomedical and therapeutic applications of biosurfactants

    Get PDF
    During the last years, several applications of biosurfactants with medical purposes have been reported. Biosurfactants are considered relevant molecules for applications in combating many diseases and as therapeutic agents due to their antibacterial, antifungal and antiviral activities. Furthermore, their role as anti-adhesive agents against several pathogens illustrate their utility as suitable anti-adhesive coating agents for medical insertional materials leading to a reduction of a large number of hospital infections without the use of synthetic drugs and chemicals. Biomedical and therapeutic perspectives of biosurfactants applications are presented and discussed in this chapter

    Towards a Formal Framework for Computational Trust

    Full text link
    We define a mathematical measure for the quantitative comparison of probabilistic computational trust systems, and use it to compare a well-known class of algorithms based on the so-called beta model. The main novelty is that our approach is formal, rather than based on experimental simulation

    The genomic basis of the plant island syndrome in Darwin’s giant daisies

    Get PDF
    The repeated, rapid and often pronounced patterns of evolutionary divergence observed in insular plants, or the ‘plant island syndrome’, include changes in leaf phenotypes, growth, as well as the acquisition of a perennial lifestyle. Here, we sequence and describe the genome of the critically endangered, Galápagos-endemic species Scalesia atractyloides Arnot., obtaining a chromosome-resolved, 3.2-Gbp assembly containing 43,093 candidate gene models. Using a combination of fossil transposable elements, k-mer spectra analyses and orthologue assignment, we identify the two ancestral genomes, and date their divergence and the polyploidization event, concluding that the ancestor of all extant Scalesia species was an allotetraploid. There are a comparable number of genes and transposable elements across the two subgenomes, and while their synteny has been mostly conserved, we find multiple inversions that may have facilitated adaptation. We identify clear signatures of selection across genes associated with vascular development, growth, adaptation to salinity and flowering time, thus finding compelling evidence for a genomic basis of the island syndrome in one of Darwin’s giant daisies

    Search for direct production of charginos and neutralinos in events with three leptons and missing transverse momentum in √s = 7 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for the direct production of charginos and neutralinos in final states with three electrons or muons and missing transverse momentum is presented. The analysis is based on 4.7 fb−1 of proton–proton collision data delivered by the Large Hadron Collider and recorded with the ATLAS detector. Observations are consistent with Standard Model expectations in three signal regions that are either depleted or enriched in Z-boson decays. Upper limits at 95% confidence level are set in R-parity conserving phenomenological minimal supersymmetric models and in simplified models, significantly extending previous results
    corecore